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SYMBOLS

A

H

W

I

T

M

6

P

q

r

i

J

k

e

m

R

Acceleration

Angular momentum of rotor blade

Rotational rate

Moment of inertia

Coordinate transformation matrix

External moment

Rotor rate

Rotor azimuth

Flapping angle

Lesd-lag angle

x-axis component of rotation rate

y-axis component of rotation rate

z-axis component of rotation rate

Unit vector along x-axis

Unit vector along y-axis

Unit vector along z-axis

Hinge offset from rotor shaft

Mass of rotor blade

Distance to blade center of mass from hinge point
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Subscripts and Superscripts

s

s w

b

P

h

C

X

Y

z

Fixed shaft-frame

Rotating shaft-frame

Blade-frame

Principal axes frame

Blade hinge point

Blade center of mass

x-axis component

y-axis component

z-axis component
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NOTATION

The subscripts, superscripts and symbols used in this paper are de-

fined below. The notation conventions are as follows:

I. All vectors are denoted by arrows over a symbol. A symbol

without an arrow represents a scalur magnitude. For example, w

represents an angular rotation rate vector while w represents the

magnitude of w.

.

scripts.

The reference point of the vector is given by the super-

-.SV_S

For example, the symbol w represents the rotational rate

vector of the s'-frame with respect to the s-frame. The second super-

script is dropped if the reference point is inertial. Instead of writing

_sV_l
the angular rate of the s'-frame relative to the inertial frame as w

+S _
it is then written as w .

3. The second subscript denotes the reference frame into which a

vector is resolved and the first subscript gives the axis of that frame.

S I

The symbol Wxs then gives the magnitude of the x component of the iner-

tial rotation rate of the s'-frame resolved in s-frame coordinates. For

conciseness, when a vector is resolved into the same coordinates frame

that it references the superscript is dropped. For example, the symbol

S t

Wxs , refers to the magnitude of the x component of the inertial rotation

rate of the s'-frame resolved in s'-frame coordinates, so it is written

instead as Wxs ,.

4. The symbols p, q and r are used in pla_'e of Wx, w and w
y z

respectively to represent magnitudes of the components of rotational

S v

rates. The symbol w representing the magnitude of the x component
XS'

of the inertial rotation rate of the s'-frame resolved in s-frame coor-

s v

dinates, is then written as Ps"

v_



SUMMARY

The inertial dynamics of a fully articulaced stiff rotor

blade are derived here with an emphasis on obtaining equations

that facilitate an organized prograrmning approach for simulation

applications. The model for the derivation includes hinge offset

and six degrees of freedom for the rotor shaft. Results are com-

pared with the flapping and lead-lag equations currently used in

the Rotor Systems Research Aircraft (RSRA) simulation model and

differences are analyzed.



INTRODUCTION

A general purpose rotor model is a necessary starting point in the

analysis and simulation of rotorcraft. In addition to allowing for

flexibility in simulation such a model also serves as a consistent

baseline from which a variety of more specialized models can be derived

to satisfy specific analytical and simulation requirements.

This paper derives the inertial dynamics of a fully articulated,

stiff rotor blade with offset hinges and si_ degrees of freedom of the

shaft. Hingeless rotors can be represented by using appropriate values

of spring stiffness and hinge offset in this fully articulated model.

A configuration of current interest is the Sikorsky S-61 rotor.

This rotor is being utilized on the Rotor Systems Research Aircraft

(RSRA) and mathematical models are given in Ref. 1 and Ref. 2. The

current simulation utilizes the model of Ref. i, however the complexity

of the model has thus far prohibited real-time simulation of acceptable

quality on existing computational facilities. Implementation is further

comp!ic_ted by the fact that these equations are not presented in a

modular, building block form that permits efficient programming. At-

tempts to modify these equations to provide a real-time simulation on

available computers have been hampered by the fact that their derivation

is _zot documented. A lack of symmetry in some of the terms and an

uncertainty as to the assumptions employed prompted the author oz Ref. 2

to perform an independent derivation from basic principles as a basis

for the analysis of computation requirements. His approach, however,

wa_ significantly different from that taken in Ref. I, so no comparison

with those equations was possible.



The derivation performed in this paper is intended to provide a

comparison with the rotor inertial dynamics of Ref. 1 as well as to pre-

sent these equations in a format more suitable for structured program-

ming. It is hoped that the results will provide a basis for more special-

ized formulations as well as permit a more efficient programming approach

for the general formulation.

In Chapter 1 the derivation is outlined and the most significant

steps are presented along with the final results. The equations are

first derived in the blade-frame since the moments of inertia are assumed

constant in this frame (see Appendix C). The blade-frame variables are

then expressed in terms of rotating shaft-frame components to obtain

differential equations for flapping and lead-lag motions. Finally, the

rotating shaft frame variables are given in terms of the fixed shaft-

frame rates and accelerations. Chapter 2 presents a comparison of the

results with the equations of Ref. 1 and Ref. 2 and Chapter 3 gives the

conclusions and recommendations. A description of the coordinate systems

and supporting derivations are given in the Appendices.



Chapter I
Derivation of Rotor Dynamics

The inertial forces present in the flapping and lagging equations

are derived based on the following assumptions:

I,

2.

axes.

3.

The rotor shaft has six degrees of freedom.

The rotor blade is hinged in both the flapping _nd lead-lag

The flapping and lead-lag hinges are co-located at an

offset, e, from the shaft axis.

4. The rotor blade is stiff.

The equation for the rotational dynamics of a fully articulated rotor blade

with co-located offset hinges, as shown in Fig. A.I, is (Ref. 3):

I.i) M = mR x +

_h
The vector M represents the total external moments

acting about the hinges and may be written in the blade coordinate

systems as:

1.2) M+h= h _ h _ M h
Mxblb + Myb3b + zb kb

The vector R represents the position of the blade center of mass

relative to the hinges and is written as:

1.3) R = R Jh

The inertial acceleration of the hinges, "Ah,is given in the blade

coordinate system as:

1 4) A h A h ib + h h• = xb Ayb J b + Azb kb

The angular momentum vector of the blade about the hinges ks given in

the blade frame as:

1.5) ,_h Hh ib + Hh +Hh= xb yb 3b zb k b

We now substitut_ 1.2), 1.3), 1.4) and 1.5) into I. I) and

perform the indicated cross-products to obtain:

1.6) _xb = mR A h "hzb +H xb



h
1.7) Myb: Hh b

1.8) M h = - mR Ah + H h
zb xb zb

Equations 1.6) and 1.8) are the fundamental relationships from

which blade flapping and lead-lag dynamics may be derived.

The components of hinge acceleration in the blade-frame are

derived in Appendix D and given in terms of rotating shaft frame rates

and accelerations as:

1.9) Ah F s ....
xb = c°s6:Axs'- - e(rs' - qs'Ps'_i- sin6Asl ys' _ e(Ps,2 2,)]+ qs

I.I0) Ah = -sinS_A s + e(p + ).
yb zs' s' qs'rs ' '

[

+ eosB sin6[ s e(_s qs,Ps, _ + cos6_ s 2Axs ' - ' - Ays' - e(Ps'

i.ii)
( t

zb L "sw SW
g

+ singlsing A s - e(; _ qs'Ps' ) + cos6iA s 2xs' s' _ ys' - e(Ps'

The blade-frame components of the time rate of change of the

?
+ rs,)i

angular momentum of the blade about the hinge are derived in Appendix C and

are given in terms of rotating shaft-frame rates as:
,o

1.12) : 'c°s - sin - ps' +%,

2 2 _( 6 6 _)I

+ (cos _ - sin 8 Ps,Sin + qs,COS )(rs, - ij}- sinB cosB_(r , - _)2 _ (p ,sin6 + q ,cos6 )
. [ s s s j

Hh IF.
yb = I "'Ps 'sin6 + qsYY ,cos_ + (Ps,COS_ - qs'

1.13) I _ ..

- irs,-,S + (Ps,Sin6 + qs,COS_)_ sin_
i

1.14) _h = ib-sin_Ip "

zb , [ s' sin6!" + q_, cos6 - 2(rs, - _)._ + r8

- qs' sin6)l+ c°sS[28(Ps'Sin6 + qs' cos_) + rs, - _5

- (Ps' sin6 + qs' l°s6)(Ps'C°S6- qs 'sin6)[
• I

sing)_- (rs,-6)_ cos8

,(Ps ,cos6



pI

Substituting i.ii) and 1.12) into 1.6) and solving for _ gives:

I _f s + r "_
_R .eos_ A s' + e(Ps' qs' s ')

- e(Ps,2+ rs2

+ Ps,COS6 - 4s,Sln6 - (Ps,Sln6 +qs,COSd)_

+ (cos-g - sin2_) ( sin6 + qs,COS_)(rs, -_)> h

f M
- sin8 cosg (r s, - (Ps,Sin6 + qs,C°s6) 2"'_-_._.__

t .- Ib
Substituting 1.9) and 1.14) into 1.8) and solving for 6 gives

- i cos6[., e(r s' - qs,ps -

f

+ ran _fs,si_ + _s,COS_ - 2(rs, -_)_ + rs,(Ps'C°s_

-qs 'sit_ )_
J

+2_(Ps,Sln _ + qs,COS6) + rs' - (Ps 'sin6 + qs 'cOs6) (Ps'C°S6

- qs, sin_)
h

M
- zb

IbCOS8

The rotating shaft-frame components of rates and acceleration_ are

derived in terms of fixed shaft-frame components in Appendix B. The resulting

equations are :

1.17)

PS' = PS sln_ + qs cos_

qs' = -_ cow + qs sln _

r S t = r S-

1.1s)

PS = PS sin_ + qs c°s_ - qs'fl

qs'--- _eos,+ _ssin,+ ps,_

rs'" ;s - _

6

• . • ",



s

Axs,= A sin_' + A cos_
xs ys

1.19) A s , = - A cosy + A sin_
ys xs ys

A s = A
ZS I ZS

Equations 1.15) through 1.19) then allow determination of flapping

acceleration and lead-lag acceleration from fixed shaft-frame components

of rates and accelerations.



Chapter II

Co!mparisonwith RSRA Rotor Equations

where the notation has been changed as required for consistency with this paper.
°. °.

In order to compare equations we must write B and _ in terms of s-frame

variables. This is accomplished by substituting 1.17) through 1.19) into

1.15) and 1.16) to get:

mR I
2.3) _ = i.--icosB A + e 2_(PsCOS _ -

b '- , zs qs sin#0

+ PsSin_ + qsCOS _ + rs(qsSin _ - PsCOS_),

E-- _ (r s+ sin_cos6 Ayssin _ A cos_ e - s2)- + (Ps sin_, + qsCOS_,) 2 Ii

+ sinBsin6 IAxssin* + AysCOS * - e _is_ _ _)

- (PsSin, + qsCOS@).(qsSlnq, - PsC°S*)![ [

+ (cos2_ - sin28) cos6(r - _ -d)(qsSin_, - PsCOS_)

+ sinS(r - a - 8) + qscos¢)s (Ps sin_ _"
m

| --

+ sinScos__ [_[(PsSin_ + qsCeS_)sin,5+(qsSin_,-PsCOS_)Cos_2_(r s _ i?__) 2!

+ cos ;s si , + - + p os ):

- sin sStn* - PsCOS_ + (2 + _)(pssin_ + qsCOS_ _ - M.: b
: I

b

In this chapter the results of Chapter I are compared with the equations

of Ref. J and Ref, 2 to evaluate the relative merits of the equations for

simulation and analvtical studies.

as given in Ref. i, are:
°. _ f"

2.1 B = mR__R_cos_.

Ib _ zs

+ e

The blade flapping and lead-lag equations,

2_?(PsCOS_,- qsSin_) +psin_ + qsCOS_

2.2

+ singcos_'A sinj, - A cos_ - e(r - 2) 2
ys xs s

- sin_
4 cos'8 cos6 PsSin'_ + qs_C_os@ 2(_ +_Z) (qs - Ps c°s*)

- 2Csin_ PsSin _ + qscos@
_ M h

22 xb

+ cosSsin8 2_(r - 2) - (r s - _2)
.-. s I b

,, mR
-8 = l. cos8 sin8 A sins - A cos$ - e - _q)s i_ _ - i ys xs "_ I ,

- eOS_xsSln0 + AyseOS_, + e(fl - r s) i
t

+ tanS-28(2 + _ - rs) + qsSln (¢ + 6) - PsCOS (@ + 8)

+ rs - gl+ 28icos6(qsStn? - PsCOSfl)

.h
- zb

IbCOS_

+ sin_(PsSin_ + qsCOS_,) '



°,

2.4) = mR -[siJA sin _,-A cos_
IbCOS B _ _ys xs

-%

-eI(r-0Q)2 + (PsSin_ + qsCOS_)2_i

L xs ys _,

+ e _f_ - r + (PsSin* + qsCOS*)(qsSin_ - PsCOS*)J ) I

f
+ tanB_ 2_(s2 + _- rs) + qs(cos_sin6 + sin, cos6)

- Ps(COS_COS6 - sin_sin_)

+ rs_s (sin*c°s6 + cos_sin_) + qs(COS_COS_ - sin_sir_-)_J

S

+ cos, sin_) + qs(CO_COS6 - sin_sin_)]

M h
- zb

IbCOS

Neglecting second order terms in shaft rotational rates (Ps' qs' rs) and

using the trigonometric identities:

2.5) sin_ + _) = cos@ sin _+ sit, cos5

cos_ + 6) = cos_cos6-sin_sin$

we may rewrite 2.3) and 2.4) as:

2.6) B = ib [ zs

+ sin_c°s6rALYsSin* - AxsCOS, - e(r s _-_]_)2_

+ sin_sin6_A sin, + A cos, - e(r - _)il

L xs ys s 4

L
+ sxn* F (_ + 8)(p sin, + cos )_

" L- s qs ,]*-_ i

+ cosBsinB _2_(I - Q) - (r - _)2 _ _2_ - .

c. t .s s . r J -_l

+ COS 6_pssin* + qsCOS* - (Q + 6.)Lqssin, - PsCOS_ Mh
• . 11 xb

=_i._ .



2.7) °" [-6 = mR sin5 A sin_ - A cos_ - e(r s _)2,
IbC°S_ L_ _ ys xs

- cos_iAxsSin_ + AysCOS , + e(_ - rs )'
_.._J

I

+ tan_,2_(_i4_ - r s) 4. qsSin(? + 5) - PsCOS(_ + _)_
L_

+ r s -(;:+ 2_icos_ (qsSin,$_ - PsCOS_ ) + sin4(PsSin'4+ qsCOS*)

Mh
- zb

IbCOS_

Comparing 2.7) and 2.2) we see that the equations are identical so the

only additional assumption made in the lead-lag equation of Ref. I is that

second order terms in shaft rates may be neglected.

Comparing 2.6) and 2.1) we see that further rearranging is required for

comparison. Using the identity:

2_2.8) cos + sin2_ = i

we multiply the last two lines of 2.6) by 2.8) and regroup to get:

"" mR [ ei2_(PsCOS _ qsSin_ ) _sSin_ + _sCOS_,j _2.9) B = -- cosBiA + - +

Ib _. [ zs ",

+ sinScos6[Ayssin _ _ AxsC°S0J _ e(rs _ Q)2

+ singsin8 xsSin_ + AysCOS _ e(r s -.k)

+ cos2grcos6!psSin, + qsCOS, 2(_2 + ,*,)(qsSin, - pscos_)I

L
- " 1 " COS_,,)__

sin6[qsSin _ - PsCOS,# + 2(S2 + _)(PsSin_ + qs

+ cosBsin_ _ (rs - S2) - (rs - f,)2 _ 6 )

.2_I-_o . . _)
+ + - -p

h t )
M

- xb

Ib

i0



L

A comparison of 2.1) and 2.9) now reveals the following discre-

pancies in 2.1)

1. Line 3 in 2.9) has been neglected. This may be justified

by assuming sin 6 is small.

2. All terms not including the factor E (rotor rate) have

been dropped from line 5 in 2.9). This may be justified since the other

factors are relatively small compared to _2 but the same is true for line

4 and similar terms have not been neglected there.

3. The square of the lead-lag rate, 6 , has been neglected in

line 6. It is not clear however, that this is negligible compared to squares of r
s

and products of r and 6.
s

4. Line 7 in 2.9) has been neglected. This may be justified

by assuming that sin_ is small.

The approach of Ref. 2 is to substitute Euler's equations in the blade-

frame into the moment equations and solve for the rotational accelerations

in the blade-frame. In this paper, Euler's equations in the blade-frame are

given in equation (C.3) and the moment equations are equations 1.6) through

1.8). Performing the substitutions we obtain:

ib (M_b-mRA_b)2.10) Pb - qbrb

(M_b + mRA_b) + pbqb
2.11) rb I b

Equation 2.10) agrees with its counterpart in Ref. 2, however the equa-

tion for _b in gef. 2 has a minus sign On the hinge acceleration term and

appears to be in error.

ll



In Ref. 2, Pb and rb are integrated and the flapping and lead-lag

rates obtained as a function of the difference in blade-frame and rota-

ting shaft-frame rates. The appropriate equations in this paper are given

in (B.16) and the resulting expressions for flapping and lead-lag rates are:

2.12) _ = Ps 'c°s6 - qs 'sin6 - Pb

2.13) _ = Ep sind + cosd]sin_ + r cos_ -S' qs' S' r b

No differential equation for qb has been obtained since the moment

of inertia about the y-axis has been assumed negligible so there is a

problem in obtaining values of qb for use in 2.10) and 2.11). In Ref. 2 it

is su88ested that, with the exception of blade pitch control, qb may be

negligible. This seems unllkely, however, since the rotational degrees of

freedom of the rotor shaft as well as the lead-lag rate (_) and the rotational

rate (_) can couple into the y-axls of the blade-frame. A solution to this

problem can be obtained by notln8 that 2.12) and 2.13) have been obtained

from the Pb and r b equations of (B.16) so an independent equation for qb

remains and is given as:

2.14) qb = [Ps 'sin_ + qs'=°s Jc°s - (rs' - _)sin_

where _ is obtained from 2.13). The hinge accelerations in the blade-frame

and the rotating shaft frame rates are required in _.i0) through 2.14) and

may be obtained from the fixed shaft-frame rates and accelerations by

1.9) through 1.11) and 1.17) through 1.19).

12



Chapter llI

Conclusions

The equations for the inertial dynamics of a rotor blade as derived

in Chapter I are intended to serve as both a general purpose simulation

model and as a baseline for more specialized analytical studies. In this pa-

per, no assumptions as to the relative magnitude of the rates have been

made. For most applications it should be possible to further simplify

these equations by appropriate assumptlons. Thls derivation has been in-

tended to serve as a baseline for more specialized applications; hence, only

the most generally applicable assumptions have been utilized.

By writing the flapplng and lead-lag equations in terms of rotating shaft-

frame rates and accelerations the equations have been significantly slmplifled

over the formualtlon in Ref. I where these equations were given in terms of

fixed shaft-frame variables. In this paper the rotating shaft frame variables

are obtained by a separate transformation from the fixed shaft frame variables.

This allows for a more structured approach to programming and thereby improves

the efficiency of the simulation. Programming errors are also more readily

located and corrected in this format.

The validity of the equations of Ref. I, which are used in the current

RSRA simulation, was checked by combining the modules derived in Chapter I

to obtain differential equations for blade flapping and lead-lag motion as a

function of fixed shaft frame variables. By neglecting higher order terms in

some rates the lead-lag equation was _: _o _E identical to the lead-lag

equation of Ref. i, but dlscrepanc!_s were found in the flapping equation.

The discrepancies appear to be the result of inconsistancies in applying small

13



angle and low rate approximations in the equations of Ref. i. No attempt

has been made in this paper to determine the validity of these assumptions

or the numerical significance of the discrepancies.

The approach used in Ref. 2 is to obtain equations for the rotational

accelerations of the blade-frame and integrate these accelerations. The

flapping and lead-lag rates are then found as a function of the difference

between blade-frame and rotating shaft-frame rates. This approach was re-

peated in Chapter II for comparison purposes and a discrepancy was found in

the rb equation. The sign of the hinge acceleration term in this equation

appears to be in error in Ref. 2.

A problem with the approach taken in Ref. 2 is that no differential equa-

tion for qb can be obtained since the y-axis moment of inertia of the blade

is a_sumed negllglble and the suggestion made in Ref. 2 that qb may be small

and ca_ be neglected does not appear to be justified. A solution to this

problem is suggested in Chapter II of this paper and involves solving for qb

as a function of rotating shaft axis rates and lead-lag rates. With this

addition, the equations of Ref. 2 may be well suited to simulation since

they are presented in an extremely modular format. For analytical work,

however, explicit differential equations for blade flapping and lead-lag

motions are required rather than expressions for these variables in terms of

the output of other differential equations. The equations derived in this

paper are intended to satisfy both simulation and analytical requirements.

14



Appendix A

Coordinate Sys terns

The four coordinate frames used in this analysis are shown in

Fig. A. i. They are:

i) The fixed shaft-frame (s).

2) The rotating shaft-frame (s').

3) The blade-frame (b).

4) The principal axes frame (p).

The fixed shaft-frame (s) is centered In the rotor hub with its

x-axis in the x-z plane of the aircraft and its z-axls normal to the

plane of the rotor hub. The s-frale is the starting point of this analysis.

Kotatlonal rates and accelerations and translatlonal accelerations of this

frame are assumed available in terms of rates and acceleratlon8 at the

aircraft center of gravity.

The rotating shaft-frame (s') is shown relative to the fixed siaft-

frame in Fig. A.2. This frame is centered in the hub but rotates with

the blade. Its y-axls is directed through the co-located hinges and its

z-axis is normal to the rotor hub. The x-axis of the s'-frame is aligned

with the y-axis of the s-frame at _ = 0.

The relative orientations of the blade-frame and the rotating shaft-frame

are shown in Fig. A.3. The rotating shaft-frame is centered at the co-located

hinges and fixed to the blade, so its origin is displaced from the s-frame

origin by the amount of hinge offset. The y-axis of this frame is aligned

with the blade and its x-axis is normal to the plane of the flapping hinge.

15



The origin of the principal axes frame (p) is co-located with the

origin of the blade-frame but the principal axes are fixed in the blade

and oriented to eliminate all products of inertia.

The relative orientation of the principal axes frame and the blade-

frame is shownin Fig. A.4. It has been assumedthat the Yb axis (axis

of feathering) passes through the center of gravity of each blade cross

section. The Yb axis is then a principal axis since the x-y and z-y

products of inertia vanish. The x and z principal axes are consequently

in the x-z plane of the blade-frame at an angle Op from the xb and zb

axes, where O is chosen to make the x-z product of inertia vanish.
P

Note that O is a function of the blade twist and the impressed blade
P

pitch, so it will vary with cyclic and collective control inputs.

The transformation from the blade-frame to the principal axis-frame

consists of a single rotation, @p, about the Yb axis and is given by

(A.I)

I cosO 0 -s_nG i

Tp/b = 0 1

sinO 0 cos@ J

[6
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Figure A.I. Coord_nete Syst____

qs

4,  Ays
_. _ _A As s
As , _\T _ y._' _ - _ %,

xs II
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Figure A.2. Fixed and Rotating Shaft Frmmes
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Figure A. 3. Rotating Shaft and Blade Frames
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Figure A.4. Principal Axes and Blade
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Appendix B

Rotational Rate of Blade Frame

Starting from the fixed shaft-frame, s, the rotational rate of the

rotating shaft frame, s', is given by:

+s' _s _s'-s(B.I) w = +

where _s is the rate of the s frame and is given in s-frame components as:

_s _ + _ + rs_s(B.2) w = Psls qs3s

_Sv--S
The vector w is the rate of the s'-frame relative to the s-frame

and from Fi_. A.2 is seen to be:

+S '--S
(B.3) w "-_2

S

where _ is the rotor rate.

Combining (B.1), (B.2) and(B.3) the rotational rate of the s' frame

may be written as:

__S f St :t .p Sf+q 3s+r(B.4) w " Ps _s s s

where:

(B.5)

s

Ps = Ps
W

s

qs = qs

I
s

r = r -
s s

From Fig. A.2 the transformation from the shaft to the rotating shaft

axes is seen to be:

(B.6)
[sin_ cos_ 0__T 'I"

where _ is the azimuth of the blade.
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The rotational rate of the s'-frame may then be resolv_ into s t

components uslng (B.6). We then have:

(B.7) wS = Ps' is' + qs' is' + rs' ks'

where :

Ps' = Ps sin_ + qs c°s_

(B.S) qs' =-Ps cos_ + qs sin_

rs I m r -s

Differentlatlng (B.8) the rotatloual accelerations in the s'-frame

are found to be:

(B.9)

l_s,= l;ssln _ + c]s cos_ - qs' r_

qs' " + si. + Ps'

Using (B.6) the acceleration of the origin of the fixed shaft-frame

may be wrltten in rotating shaft-frame coordinates as:

(B.IO)

A8
xs' = Axs sln_ + Ay s cos_

As
ys _ "Axs cos_ + Ay s sin_

AS = A S
|

ZS ZS

The rotational rate of the blade-frame, b, is given by:

(B.n) _ = _s' +

-+b-s'
where w is the rate of the blade-frame relative to the rotating shaft-

frame. From Fig. A.3 we may write w_b-s' in blade coordinates as:

(B.12) w_b-s' = - _b + _sinB_b - _cos8 _cb

where 8 is the flapping angle and 61s the lead-lag angle.
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The transformation from rotating shaft-frame to blade-frame is

found from Fig. A.3 to be:

(B.13) Tb/s ' = I 0 0 cos_ - sin6cos8 -sin8 sin_ cos6

siu8 COS t _-0 0

or

(B.14) _os 6 -sin6 0_o_
Tb/s' =JcosBsin6 cos6cos6 -sin8 I

[sinSsin6 sin6cos6 cosBJ

UsinF (B.14) to resolve (B.7) into the blade-frame and combining

the result with (B.11) and (B.12) we get:

_b _ _

(B.15) w ffi Pb Ib + qb Jb + rb

,4_tere:

Pb ffi Ps 'c°s6 - qs' sin5 -

(s.16) qb = [Ps 'sin_ + qs' cos_cos_- (rs,-6) sinB

rb : _s, sin_ + as, cos_]sin_ + (rs, -_) cos_

(B.17)

°.

• = - sin6 + qs' cosPb s' cos6 qs' sin6 -_- s'

= Ip ,sin6 + qs' cos_ + Eps, cos_ - qs' sin_qb s
t

- (r - _)l_Icosl3S v
J..

- ' - _ + LPs 'sln_ + qs' cos sin8
t s j

rb = !Ps' sin_ + qs' cos_ + _Ps' cos_ - qs' sin6_6
t

- (rs, -_)8_ slnE

"I"f; , - 8"j÷ _S' sln6 + q., COS_8"ICOSB
k s -j
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Appendix C

Euler's Equations in the Blade Frame

The angular momentum vector in the blade-frame may be written in terms

of the principal moments of inertia as (Ref. 3):

(C.I) _ = TTp/b I T wbp p/b

where Tp/b is the transformation from the blade-frame to the principal axis

frame, as given by (A.I), I is the principal moment of inertia tensor, and
P

_bis the angular velocity of the blade-frame, as given by (B.15).

Substituting (A.I) and (B.15) into (C.l) gives:

+ I sin2Op ) Pb + (Izz - Ixx) sinSpC°SSprbH_ ffi(Ixx c°S28p zz

(C.2) _yb = Iyyqb

_h cOSOpp b + (Ixx sin20 + IHzb = (Izz - Ixx) sinOp p zz coS28p)rb

The time rate of change of the angular momentum vector is then:

(C.3) ]_h = _h-b + Wb x H

A significant simplification can be obtained by the following assumption:

= I _ Ib(C.4) Ixx zz

The angular momentum components are then:

±h
Hxb ffi IbP b

(c.5) _b ffi lyyqb

_b ffiIbrh

Note that this assumption has eliminated all @
P

of inertia constant in the blade-frame.

terms, making the moments
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Using (C.5) in (C.3) gives:

(C.6)

fih b = IbP b + (I b- Iyy)qbr b

fih b = Iyyq b

fihzb = Ibr b + (Iyy -I b) pbqb

If we further assume:

<<

(C.7) Iyy Ibb

then (C.6) becomes:

H_b = Ib(P b + qbrb )

(C.8) _b = Iyyqb

Rhzb = Ib(rb-pbq b)

Using (B.16) and (g17) in
f

(c.9)

(C.8) gives:

_h
yb

(C.lO)

(C.ll)

, [ _} ""=ib!;.,co.,-:,s,_In,-[ps,.In*+q_,c. _-B
" L2 2 ++ _cos _-sim _[Ps,Sin6 qs,COS_] (rs,-_)

_sin8 cosB (rs '-_)2 -(Ps'[ sin6 qs' c°s_)2j
(

= I j[;s,Sln_+ _,cos6+ %,_os_-q_,_In6>_-<rs,
YY _ 1[ r • ""

-[ rs, - 6 + (Ps,Sin6 + qs, COS6)_j sinf_ /
/

u [r .r L s

+ cosB[28L ps,Sin_ +qs,COS6] + ;s'- _

cos6 -qs'
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Appendix D

Acceleration of Hinse Point

The acceleration of the hinge may be written as:

(V.l) _h = _s + _h-s

where _s is the inertial acceleration of the origin of the s-frame

and_ h-s Is the acceleration of the hinge relative to the s-frame.

Using the transformation of(B.6) we may write K s Interms of its

components in the s'-frame as:

(D. 2) _s s ÷ s sA_s' is + Is + _s'= , Ay s, Azs'

From Flg. A.I the acceleration of the hinge relative to the s-frame

is seen to be:

(v.3)

where:

(V.4) e = eJ s'

We may write the derivative of (D.4) in terms of the rotational rate of

the s'-frame as :

(D.S) _ a_s, +_s' _s'

where we have noted that e is zero in the s'-frame. The second derivative

is then:
°.

(D.6) -_ _s'e _ w _ +_s' _ e_

combining (D.I), (V.3) and(V.6) then gives:

_S v _S t
(V.7) _h _s + w x_ + w x (_s' x_)

Using the definition of _s' in (B.7) and its derivative along wlth

(D2) and (D.4) we obtain:

(D.8) _ h _s' + h * A_s I,= Axs' ANs' is' + '

25
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where:

(D.9)

Ah s
xs' = AXs' e(rs' - qs' Ps ')

h s 2 2)
Ays, = Ays, - e(Ps= + rs,

Ah s + e(p + rs )zs' = Azs' s' qs' '

Using the transformation of (B.14) we may then write _h in terms of

its components in the blade-frame as:

,b%

where:

Ahxb Ah_s,COS{_ - h sln6= Ay s ,

eos_ - A_s, sln8

Ahb = (Ahxs , sln_ + As cos_)sln8 + Ah cosByS t ZS '

V.ll)
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